1 (i) Find the point of intersection of the line $\left.\left.\mathbf{r}=\begin{array}{r}-8 \\ -2 \\ 6\end{array}\right)+\lambda \begin{array}{r}-3 \\ 0 \\ 1\end{array}\right)$ and the plane $2 x-3 y+z=11$.
(ii) Find the acute angle between the line and the normal to the plane.

2 The points A, B and C have coordinates $(1,3,-2),(-1,2,-3)$ and $(0,-8,1)$ respectively.
(i) Find the vectors $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$.
(ii) Show that the vector $2 \mathbf{i}-\mathbf{j}-3 \mathbf{k}$ is perpendicular to the plane $A B C$. Hence find the equation of the plane ABC .

3 (i) Write down normal vectors to the planes $2 x-y+z=2$ and $x-z=1$.
Hence find the acute angle between the planes.
(ii) Write down a vector equation of the line through $(2,0,1)$ perpendicular to the plane $2 x-y+z=2$. Find the point of intersection of this line with the plane.

4 (i) Find the cartesian equation of the plane through the point $(2,-1,4)$ with normal vector

$$
\mathbf{n}=\left(\begin{array}{l}
1 \tag{3}\\
1 \\
2
\end{array}\right)
$$

(ii) Find the coordinates of the point of intersection of this plane and the straight line with equation

$$
\mathbf{r}=\left(\begin{array}{r}
7 \tag{4}\\
12 \\
9
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)
$$

Fig. 7
Fig. 7 illustrates a house. All units are in metres. The coordinates of A, B, C and E are as shown. BD is horizontal and parallel to AE.
(i) Find the length AE.
(ii) Find a vector equation of the line BD . Given that the length of BD is 15 metres, find the coordinates of D.
(iii) Verify that the equation of the plane ABC is

$$
\begin{equation*}
-3 x+4 y+5 z=30 \tag{4}
\end{equation*}
$$

Write down a vector normal to this plane.
(iv) Show that the vector $\left(\begin{array}{l}4 \\ 3 \\ 5\end{array}\right)$ is normal to the plane ABDE. Hence find the equation of the plane ABDE.
(v) Find the angle between the planes ABC and ABDE .

